TERPENES AND RELATED SYSTEMS. XIII. REGIOSPECIFIC FRAGMENTATION OF PATCHOULOL: A SHORT SYNTHESIS OF &-BULNESENE

GOVERDHAN MEHTA * AND BRIJ PAL SINGH

Department of Chemistry,

Indian Institute of Technology, Kanpur-208016, U.P., India

(Received in UK 7 October 1975, accepted for publication 3 November 1975)

A utilitarian synthetic approach to the sesquiterpenoids consists of employ ing naturally occurring C₁₅-triisoprenoids as synthems.² This strategy envisages the selection of an abundantly available polycyclic sesquiterpene, bearing a latent carbocyclic framework and stereochemical disposition of the targeted molecule, which can be unmasked <u>via</u> a key bond-breaking operation. Routine manipulation of functional groups then completes the synthetic venture.³ In particular pridged tricyclic sesquiterpenoids, derived <u>via</u> the biogenetic cyclization of simple mono- and bicyclic precursors, can unravel a variety of carbocyclic skeletons through suitably tailored chemical scission of strategic C-C bonds.³ In pursuance of the above theme, we wish to report the creation⁴ of <u>cis-1-ketoeudesmanes 2</u> and 3, with desired disposition of stereochemistry at four chiral centres, from readily available⁵ tricyclic alcohol patchoulol 1. Further elaboration of 2 completes a short synthesis⁶⁻⁸ of the hydroazulenic sesquiterpene «-bulnesene 8.

Refluxing (20 hr) a solution of patchoulol $\underline{1}$ (23 mmol) and lead tetraacetate (36 mmol) in 250 ml dry benzene (containing suspended $CaCO_3$) under N_2 blanket led to the formation of a 2:2:1 mixture of $\underline{2},\underline{3}$ and $\underline{4}$ in 50% yield. A combination of column chromatography and preparative $TLC(AgNO_3-silica$ gel and silica gel) resulted in the isolation of $\underline{2},\underline{3}$ and $\underline{4}$ in pure form and structural assignments to them follows from the complimentary spectral data summarized below: 9

Compound 2: $C_{15}H_{24}O$, v_{max} (neat): 1710 (carbonyl), 3180, 1650 and 890 cm⁻¹ (exocyclic methylene). PMR: $\delta O.98$ (3H, d, $\underline{CH_3}$ - \dot{C} -H, J=7Hz), 1.2 (3H, s, $\underline{CH_3}$ - \dot{C} -), 1.68 (3H, br, s, $\underline{CH_3}$ - \dot{C} - \dot{C} -), 4.65 (2H, br, s, $\underline{H_3}$ - \dot{C} - \dot{C} -).

Compound 3: $C_{15}H_{24}O$, y_{max} (neat): 1705 cm⁻¹ (carbonyl). PMR: 1.04 (3H, d, 4495

4496 No. 50

No. 50 4497

 $\underline{\text{CH}}_3$ - $\dot{\zeta}$ -H, J=7Hz), 1.2 (3H, s, $\underline{\text{CH}}_3$ - $\dot{\zeta}$ -), 1.64 (6H, br, s, $\underline{\text{CH}}_3$ - ζ - $\dot{\zeta}$ -). The spectrum was transparent in the olefinic proton region.

Compound 4: $C_{15}^{H}_{24}^{O}$, ν_{max} (neat): 980, 998, 1060, 1110 cm⁻¹ (ether). PMR: δ 0.989 (3H, d, \underline{CH}_{3} - \dot{C} -H, J=7Hz), 0.95 & 1.04 (3H, s, \underline{CH}_{3} - \dot{C} -O), 1.76 (3H, br, s, \underline{CH}_{3} - \dot{C} =C-), 5.41 (1H, br, \underline{H} - \dot{C} =C-). Addition of Eu(fod) a reagent (R/s = 0.105, motar ratio) led to following PMR chemical shifts: 1.02 (3H, d, \underline{CH}_{3} - \dot{C} -H, J=7Hz), \underline{CH}_{3} (6H, s, \underline{CH}_{3} - \underline{C} -O-), 1.65 (3H, br, s, \underline{CH}_{3} - \dot{C} =C-), 5.5 (1H, br, \underline{H} - \dot{C} =C-).

The <u>C18</u> fused eudesmane derivatives $\underline{2}$ & $\underline{3}$ are derived through the regiospecific cleavage of C_1 - C_{12} bond (marked a) in lead ester $\underline{5}$ along precedented lines. A competitive rearrangement process $\underline{5}$ (arrows) leads to the formation of the interesting gualoxide $\underline{4}$.

Reduction of 1-ketoeudesmane $\underline{2}$ with NaBH $_4$ in methanol (4 hr, 32°) resulted in the addition of the hydride from the less hindered β -face and alcohol $\underline{6}$ (ir: 3600, 1650 and 890 cm⁻¹; PMR: δ 3.9, 1H, $\underline{\text{H-COH}}$) was obtained in good yield. Tosylation of $\underline{6}$ with p-toluenesulphonylchloride-pyridine (7 days, 32°) gave the liquid tosylate $\underline{7}$ (1650, 1180, 1170 and 890 cm⁻¹) in quantitative yield. Solvolysis $\underline{11}$ of $\underline{7}$ in 0.5 molar potassium acetate in acetic acid (8 hr, 85°) gave α -bulnesene $\underline{8}$ identical (ir, pmr, tlc) with the natural specimen.

The availability of synthons $\underline{2}$ and $\underline{3}$ in one step from patchoulol $\underline{1}$ and the efficiency of the three step $\underline{2} \rightarrow \underline{8}$ transformation should provide a simple entry to several other functionalized perhydroazulenes of current interest¹² along these lines.

Acknowledgement: We wish to thank Dr. Sukh Dev, Malti-Chem Research Centre, Baroda for the pmr spectra of the compounds reported here and Professor C.H. Heathcock, University of California, Berkeley for the spectra of natural &bulnesene.

REFERENCES

- 1. Part XII. G. Mehta and B.P. Singh, Tetrahedron Lett., 000 (1975).
- 2. The utility of such a synthetic approach is fully substantiated by the number of short and elegant sesquiterpene syntheses emanating from santonin. A partial listing of these is reported.³

4498 No. 50

3. For an interesting example employing longifolene as synthon, see, G. Mehta and S.K. Kapoor, J. Org. Chem., 39, 2618 (1974); G. Mehta, S.K. Kapoor, T.N.G. Row and K. Venkatesan, Tetrahedron Lett., 2653 (1974).

- 4. Eudesmanes substituted at 1-position are not readily accessible⁶, ¹³ through total synthesis. However, a few <u>trans</u>-fused derivatives are formed in the transannular cyclizations of germacrane-type medium ring 1,5-dienes, see, J.K. Sutherland, Tetrahedron, <u>30</u>, 1651 (1974).
- 5. Patchoulol 1 is the chief constituent of the commercial patchouli oil from which it is readily separated, R.B. Bates and R.C. Slagel, Chem. & Ind. (London), 1715 (1962). We wish to thank Plaimer & Co., Australia and Fritzsche D & O, New York for a generous gift of this oil.
- 6. d-Bulnesene 8 has been previously synthesized through multi-step reaction
 sequence by Heathcock
 7 and Piers.⁸
- 7. C.H. Heathcock and R. Ratcliffe, J. Amer. Chem. Soc., 93, 1746 (1971).
- 8. E. Piers and K.F. Chem., Chem. Comm., 562 (1969).
- 9. This spectral data for $\underline{2} \& \underline{3}$ conclusively rule out other formulations that may result from the scission of either $C_1 C_2$ or $C_1 C_{10}$ bond in $\underline{1}$.
- 10. M. Amorosa, I. Caglioti, G. Cainelli, H. Immer, J. Keller, H. Wchrli, M. Lj. Michailovic, K. Schaffner, D. Arigoni & O. Jeger, Helv. Chim. Acta, 45, 2674 (1962).
- 11. The C_4 - β -methyl group and C_7 - β -isopropyl group with <u>cis</u> ring junction ensure the favourable conformation γ and provide the requisite geometry for the smooth rearrangement.
- 12. J.A. Marshall, Synthesis, 517 (1972).
- 13. M. Kato, H. Kosugi and A. Yoshikoshi, Chem. Comm., 185 (1970).