TERPENES AND RELATED SYSTEMS. XIII. 1 REGIOSPECIFIC FRAGMENTATION OF PATCHOULOL: A SHORT SYNTHESIS OF d -BULNESENE

GOVERDHAN VEHTA* AND BRIJ PAL SINGH Department of Chemistry, Indian Institute of Technology, Kanpur-208016, U.P.,Indla (Received in UK 7 **October** 1975, **8CCepted for publlc8tlon 3 November 1975)**

A utilitarian synthetic approach to the sesquiterpenoids consists of employ ing naturally occurring C_{is}-triisoprenoids as synthons.² This strategy envisages the selection of an abundantly available polycyclic sesquiterpene, bearing a latent carbocycllc framework and stereochemlcal disposition of the targeted molecule, which can be unmasked via a key bond-breaking operation. Routine manipulation of functional groups then completes the synthetic venture.³ In particular bridged tricyclic sesquiterpenoids, derived <u>via</u> the biogenetic cyclization of simple mono- and bicyclic precursors, can unravel a variety of carbocyclic skeletons through suitably tailored chemical scission of strategic C-C bonds. 3 . In pursuance of the above theme, we wish to report the creation⁴ of <u>cis</u>-l-ketoeudes manes 2 and 2, **with** desired disposition of stereochemistry at four chiral centres, from readily available⁵ tricyclic alcohol patchoulol <u>1</u>. Further elaboration of <u>2</u> completes a short synthesis⁶⁻⁸ of the hydroazulenic sesquiterpene α -bulnesene $\underline{8}$.

Refluxing (20 hr) a solution of patchoulol 1 (23 mmol) and lead tetraacetate (36 mmol) in 250 ml dry benzene (containing suspended CaCO₃) under N_2 blanket led to the formation of a 2:2:1 mixture of $2,3$ and 4 in 50% yield. A combination of column chromatography and preparative TLC($AgNo₃-silica$ gel and silica gel) resulted in the isolation of 2 , 3 and 4 in pure form and structural assignments to them follows from the complimentary spectral data summarized below: 9

Compound 2: $C_{15}H_{24}$ 0, \boldsymbol{y}_{max} (neat): 1710 (carbonyl), 3180, 1650 and 890 cm⁻¹ (exocyclic methylene). PMR: 60.98 (3H, d, CH₃- $\frac{1}{\zeta}$ -H, J=7Hz). 1.2 (3H, s, CH₃- $\frac{1}{\zeta}$ -). 1.68 (3H, br, s, $\frac{CH}{3}$ -C=C-), 4.65 (2H, br, s, H_2 C=C-).

Compound 3: $C_{15}H_{24}O_{\nu m,ax}$ (neat): 1705 cm⁻¹ (carbonyl). PMR: 1.04 (3H, d, 4495

 \mathbb{F}^{11} QН 9 8 15 Ĥ $\overline{1}$

 $\underline{7}$. $X = \overline{0}$ Ts

 $\text{CH}_3-\overset{\perp}{\varphi}$ -H, J=7Hz), 1.2 (3H, s, $\text{CH}_3-\overset{\perp}{\varphi}$ -), 1.64 (6H, br, s, $\text{CH}_3-\overset{\perp}{\underbrace{\text{CH}}_3}$ - $\overset{\perp}{\underbrace{\text{CH}}_3}$). The spectrum was transparent in the olefinic proton region.

Compound 4: C15H240, pmax(neat): 980, 998, 1060, **1110 an-**(ether). PMR: 60.989 (3H, d, $\underline{\text{CH}}_{3}$ -C-H, J=7Hz), 0.95 & 1.04 (3H, s, $\underline{\text{CH}}_{3}$ -C-O), 1.76 (3H, br, s, $\underline{\text{CH}}_3\text{-C=C-}$), 5.41 (IH, brs,H-C=C-). Addition of Eu(fod)₃ reagent (R/s = 0.105, molar ratio)led to following PMR chemical shifts: 1.02 (3H, d, $\underline{CH_2}-\zeta-H$, J=7Hz), 1.22 (6H, S, $\rm{CH_3-C-C-}$), 1.85 (3H, br, s, $\rm{CH_3-C=C-}$), 5.5 (1H, br, $\rm{H-C=C-}$).

The cis fused eudesmane derivatives \angle & 3 are derived through the regiospecific cleavage of $C_1 - C_{12}$ bond (marked a) in lead ester \le along precedented 10 lines. A competitive rearrangement process 5 (arrows) leads to the formation of the interesting guaioxide 4.

Reduction of 1-ketoeudesmane 2 with NaBH₄ in methanol (4 hr, 32⁰) resulted in the addition of the hydride from the less hindered β -face and alcohol <u>6</u> (ir: 3600, 1650 and 890 cm $\overline{}$; PMR: δ 3.9, 1H, H-C-OH) was obtained in good yield. Tosylation of <u>6</u> with p-toluenesulphonylchloride-pyridine (7 days, 32⁰) gave the liquid tosylate <u>7</u> (1650, 1180, 1170 and 890 cm ⁻) in quantitative yield. Solvolysis" of <u>7</u> in 0.5 molar potassium acetate in acetic acid (8 hr, 85°) gave **o(**bulnesene $\underline{8}$ identical (ir, pmr, tlc) with the natural specimen.

The availability of synthons 2 and 3 in one step from patchoulol 1 and the efficiency of the three step $2 \rightarrow 8$ transformation should provide a simple entry to several other functionalized perhydroazulenes of current interest¹² along these lines.

Acknowledgement: We wish to thank Dr. Sukh Dev, Malti-Chem Research Centre, Baroda for the pmr spectra of the compounds reported here and Professor C.H. Heathcock, University of California, Berkeley for the spectra of natural obulnesene.

REFERENCES

- 1. Part XII. G. Mehta and B.P. Singh, Tetrahedron Lett., 000 (1975).
- 2. The utility of such a synthetic approach is fully substantiated by the number of short and elegant sesquiterpene syntheses emanating from santonin. A partial listing of these is reported.³
- 4. Eudesmanes substituted at 1-position are not readily accessible $^{6, \; 13}$ through total synthesis. However, a few trans-fused derivatives are formed In the transannular cycllzatlons of gennacrane-type medium *rmg* 1,5-dlenes, see, J.K. Sutherland, Tetrahedron, 30, 1651 (1974).
- 5. Patchoulol 1 is the chief constituent of the commercial patchouli oil from which it 1s readily separated, R.B. Bates and R.C. Slagel, Chem. & Ind. (London), 1715 (1962). We wish to thank Plaimer & Co., Australia and Fritzsche D & O, New York for a generous gift of this oil.
- 6. d-Bulnesene 2 has been previously synthesized through multi-step reaction sequence by Heathcock⁷ and Piers.⁸
- 7. C.H. Heathcock and R. Ratcliffe, J. Amer. Chem. Soc., <u>93</u>, 1746 (1971).
- 8. E. Piers and K.F. Chem., Chem. Comm., 562 (1969).
- 9. This spectral data for 2×3 conclusively rule out other formulations that may result from the scission of either $C_1 - C_2$ or $C_1 - C_{10}$ bond in 1.
- 10. M. Amorosa, L. Caglloti, G. Cainelli, H. Irroner, J. Keller, H. Wchrli, M. LJ. Michailovac, K. Schaffner, D. Arlgonl & 0. Jeger, Helv. Chlm. Acta, 45, 2674 (1962).
- 11. The C_{4} - β -methyl group and C_{7} - β -isopropyl group with cis ring junction ensure the favourable conformation 1 and provide the requisite geometry for the smooth rearrangement.
- 12. J.A. Marshall, Synthesis, 517 (1972).
- 13. M. Kato, H. kosugl and A. Yoshikoshl, Chem. Comm., 185 (1970).